

Essential Ocean Variable (EOV): Dissolved Oxygen

Background and Justification

Oceanic measurements of dissolved oxygen have a long history, and oxygen (O_2) is the third-most oftmeasured water quantity after temperature and salinity. Because of technological advances in the last decade oxygen observations are poised to make the same breakthrough regarding frequency and depth of measurements that temperature and salinity observations made in this decade by utilizing profiling floats and other autonomous platforms. The implementation of a full-fledged observatory of oxygen in the ocean is critical to measure and understand the large (mostly) decreasing trends in the concentrations of dissolved oxygen in the ocean over the last few decades. These trends have important implications for our understanding of anthropogenic climate change. Sub-surface oxygen concentrations in the ocean everywhere reflect a balance between supply through circulation and ventilation and consumption by respiratory processes, the absolute amount of oxygen in a given location is therefore very sensitive to changes in either process. Oceanic oxygen has therefore been proposed as a bellwether indicator of climate change. Moreover, a global ocean O_2 observing network can improve the atmospheric oxygen to nitrogen ratio (O_2/N_2) constraint on the ocean-land-partitioning of anthropogenic carbon dioxide (CO_2). Annual cycles in oxygen concentration that are observed below the euphotic zone will also allow determination of the seasonal to interannual net remineralization rates as a proxy for export production.

It will help interpretation of variations in water mass ventilation rates and will provide crucial data (initial conditions, evaluation) for ocean biogeochemistry models. It will aid interpretation of sparse data from repeat hydrographic surveys that are needed, for example, to constrain the oceanic inventory of anthropogenic CO₂.

Table 1: EOV Information	
Name of EOV	Dissolved Oxygen
Sub-Variables	
Derived Products	Net Community Production and Export production (NCP&E), Air-sea O ₂ fluxes, Improved constraint on atmospheric O ₂ /N ₂ ratio (partitioning of anthropogenic CO ₂), Temporal and spatial extent of hypoxic/anoxic regions
Supporting Variables	Temperature (T), Salinity (S), Wind speed, Mixed Layer Depth (MLD), Stratification
Contact/Lead Expert(s)	Arne Körtzinger (GEOMAR, Germany), Richard Wanninkhof (NOAA AOML, USA)

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Table 2: Requirements Setting				
Responsible GOOS Panel	Biogeochemistry Panel			
Societal Drivers	 The role of Human imp Ocean ecos 	ocean biogeochemi bacts on ocean bioge system health	stry in climate eochemistry	
Scientific Application(s)	 Q 1.1. How is the ocean carbon content changing? Q 2.1. How large are the ocean's "dead zones" and how fast are they changing? Q 3.1. Is the biomass of the ocean changing? Q 3.2. How do the eutrophication and pollution impact ocean productivity and water quality? 			
Readiness Level	Mature			
Phenomena to Capture	1 Air-sea fluxes of O ₂	2 Changes in storage of O ₂	3 Extent of hypoxia*	4 Net Community Production & Export (NCP&E)
Temporal Scales of the Phenomena	Monthly	Seasonal to decadal	<u>Coastal</u> Seasonal <u>Open Ocean</u> Annual	Weekly to monthly
Spatial Scales of the Phenomena	1-250 km	100-1000 km	<u>Coastal</u> 0.1-100 km <u>Open Ocean</u> 100-1000 km	<u>Coastal</u> 1-100 km <u>Open Ocean</u> 100-1000 km
Magnitudes/Range of the Signal	100 Tmol O ₂ year ⁻¹	0.4 Pmol O ₂ decade ⁻¹	<u>Coastal</u> 400 hypoxic regions; 425,000 km ² <u>Open Ocean</u> ? Volume/area of hypoxic regions	8 Pg C year ⁻¹

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

ICSU

MA

SCOR

UNEP

INESCO

Desired Detection Limit	± 10 %	± 10 %	± 10 %	± 25 %
Relative to the Signal			<u>Coastal</u>	<u>Coastal</u>
			?	?
			Open Ocean	<u>Open Ocean</u>
			?	?

*Hypoxic = waters with Dissolved Oxygen below ≤ 2 ml of O₂ l⁻¹ (Diaz & Rosenberg, 1995)

Figure 1: Spatial and temporal scales of phenomena (as color-coded and listed in Table 2 above) to be addressed.

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Table 3: Current Observing Networks*						
Observing Network	Profiling Floats (PF)	Repeat Hydrography (RH)	Moorings (M)	Gliders (G)	Ship-based Time-Series (STS)	Ship Of Opportunity (SOO)
Phenomena Addressed	1, <mark>2</mark> ,3,4	2	1,4	1,3,4	3,4	1,4
Readiness Level of the Observing Network (as defined in the FOO)	Pilot/ Mature	Mature	Mature	Mature	Mature	Mature
Spatial Scales Currently Captured by the Observing Network	Global every 3°	Global along section: 30 nm Section spacing: 20°	Local	<u>Coastal</u> 10-100 km	Local	10-100 km
Typical Observing Frequency	Bi-weekly to annual	Decadal	Hourly	Hourly	Monthly	Sub-weekly to monthly
Supporting Variables Measured	T, S, MLD, Stratification	T, S, MLD, Stratification	T, S	T, S, MLD, Stratification	T, S, MLD, Stratification	T, S, MLD, Stratification
Sensor(s)/ Technique	Optical oxygen sensor	Wet chemistry (Winkler)/ Polarographic	Optical oxygen sensor	Optical oxygen sensor/ Polarographic	Wet chemistry (Winkler)/ Polarographic	Optical oxygen sensor
Accuracy/Uncert ainty Estimate (units)	±2.0 μmol O ₂ kg ⁻¹	±0.5 μmol O ₂ kg ⁻¹	±2.0 μmol O ₂ kg ⁻¹	±2.0 μmol O ₂ kg ⁻¹	±0.5 μmol O₂ kg ⁻¹	±2.0 μmol O ₂ kg ⁻¹
Reporting Mechanism(s)	GOOS Implementation Plan IOCCP Report					

*By an Observing Network we understand a number of reasonably well coordinated observing platforms equipped with technology allowing measurements of this particular EOV.

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the sea.

Table 4: Future Observing Networks					
Observing Network	Ship Of Opportunity (SOO)				
Phenomena Addressed	1,4				
Readiness Level of the Observing Network (as defined in the FOO)	Pilot				
Spatial Scales Captured by the Observing Network	<u>Coastal</u> 10-100 km <u>Open Ocean</u> 10-1000 km				
Typical Observing Frequency	Monthly				
Time-Scale Until Part of Observing System	5-10 years				
Supporting Variables Measured	O ₂ , S, T, Wind speed				
Sensor(s)/Technique	Equilibrator inlet mass spectrometry				
Accuracy/Uncertainty Estimate (units)	± 1%				

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Figure 2. Spatial and temporal observation scales of component networks listed in Table 3 (thick coloured circles) and in Table 4 (thin black circles).

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Table 5: Data & Information Creation					
Responsible entity and readiness level in each category per observing network	Oversight & Coordination	Data Quality Control	Near Real-Time Data Stream Delivery	Data Repository	Data Product
Profiling Floats	Bio-Argo		CORIOLIS		Global NCP maps, Global O₂ flux maps, Global eutrophication maps
	Pilot		Pilot		
Repeat Hydrography	GO-SHIP	National programs	National data centres	CCHDO	
	Mature	Mature			
Moorings		PIs	National data centres, CORIOLIS/GODAE		
Gliders					
Ship-based Time-Series					
Ship Of Opportunity					

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

WHO INCOMENTION OF A COUNCIL OF Science OF A COUNCIL OF A COUNC

Table 6: Links & Refe	erences
Links (especially regarding Background and Justification)	http://www.solas-int.org/files/solas-int/content/downloads/pdf/reports/SOLAS- IMBER/02_argo_whitepaper.pdf http://www.oceanobs09.net/proceedings/cwp/cwp39/ http://www.oceanobs09.net/plenary/files/draft%20papers/Gruber_Koertzinger_Draf t_Plenary_18JAN.pdf Diaz, R. J. & Rosenberg, R. (2008), 'Spreading Dead Zones and Consequences for Marine Ecosystems', <i>Science</i> 321 (5891), 926929.
Links for Contributing Networks	http://www.coriolis.eu.org/ (ARGO/PF) http://cchdo.ucsd.edu/ (RH) http://www.bco-dmo.org/ (STS)
Data References	http://www.coriolis.eu.org/ (ARGO/PF) http://cchdo.ucsd.edu/ (RH) http://www.bco-dmo.org/ (STS)

List of abbreviations

EOV – Essential Ocean Variable GOOS – Global Ocean Observing System IOCCP – International Ocean Carbon Coordination Project FOO – Framework for Ocean Observing O₂ – Oxygen C – Carbon T – Temperature S – Salinity MLD – Mixed Layer Depth NOAA – National Oceanic and Atmospheric Administration OAML – Atlantic Oceanographic and Meteorological Laboratory **GEOMAR – Research Center for Marine Geosciences** NCP&E – Net Community Production and Export production PF – Profiling Floats RH – Repeat Hydrography STS - Ship-based Time-Series SOO - Ship Of Opportunity G – Gliders M – Moorings nm – nautical mile = 1.852 km Pmol = 10¹⁵ moles Tmol = 10¹² moles μ mol = 10⁻⁶ moles

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

CSU

CCHDO – CLIVAR and Carbon Hydrographic Data Office GO-SHIP – Global Ocean Ship-based Hydrographic Investigations Program GODAE – Global Ocean Data Assimilation Experiment PI – Principal Investigator

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the sea.

