

Essential Ocean Variable (EOV): Stable Carbon Isotopes

Background and Justification

The utility of carbon-13 isotope (δ 13C, the carbon-13 to carbon-12 isotope ratio 13C/12C) as a tracer of the ocean's carbon cycle is observation limited. By observing the temporal development of the lightening of the oceanic inorganic carbon pool due to the uptake of CO2 originating from the burning of 13C-depleted fossil fuel carbon, a phenomenon also known as oceanic 13C Suess effect, an estimation of the anthropogenic carbon fraction of DIC is possible. Recent improvements in measuring the and concentration of carbon dioxide (CO₂) gas dissolved in seawater using field portable spectrometers open up the possibility of underway ¹³C/¹²C observations across large portions of the surface ocean. Such data sets would substantially improve δ ¹³C-based estimates of organic matter (OM) export rate and of the air-sea ¹³CO₂ flux. The latter term can be compared to depth-integrated ¹³CO₂ inventory changes in the water column to provide a separation of anthropogenic CO₂ change due to air-sea CO₂ flux versus change due physical transport by ocean circulation. Recent application of this approach in the North Atlantic indicates that 50% of the anthropogenic CO₂ increase in this ocean basin is a result of transport from the South Atlantic as part of the meridional overturning circulation.

Table 1: EOV Information	
Name of EOV	Stable Carbon Isotopes
Sub-Variables	¹³ C/ ¹² C isotope ratio of Dissolved Inorganic Carbon (DIC)
Derived Products	Air-sea carbon flux, Anthropogenic CO ₂ inventories, Organic matter export
Supporting Variables	Temperature (T), Salinity (S), Dissolved Inorganic Carbon (DIC), Total Alkalinity (TA), Fugacity of carbon dioxide (fCO ₂)
Contact/Lead Expert(s)	Contact: IOCCP Lead Experts: Arne Körtzinger (GEOMAR, Germany), Paul Quay (University of Washington, USA)

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Table 2: Requirements Setting				
Responsible GOOS Panel	Biogeochemistry Panel			
Societal Drivers	 The role of ocean biogeochemistry in climate Human impacts on ocean biogeochemistry 			
Scientific Application(s)	Q 1.1. How is the ocean carbon content changing Q 2.2. What are rates and impacts of ocean acidification?			
Readiness Level	Mature			
Phenomena to Capture	1 Interior ocean anthropogenic CO ₂ storage	2 Organic carbon export from euphotic zone		
Temporal Scales of the Phenomena	Decadal	Seasonal to decadal		
Spatial Scales of the Phenomena	100-1000 km	100-1000 km		
Magnitudes/Range of the Signal	2 Pg C year ⁻¹	0.5 Pg C yr ⁻¹ decade ⁻¹ ?		
Desired Detection Limit Relative to the Signal	± 10%	± 20 %		

Figure 1: Spatial and temporal scales of phenomena (as color-coded and listed in Table 2 above) to be addressed.

Table 3: Current Observing Networks*					
Observing Network	Ship Of Opportunity (SOO)	Repeat Hydrography (RH)	Ship-based Time-Series (STS)		
Phenomena Addressed	2	1,2	1,2		
Readiness Level of the Observing Network (as defined in the FOO)	Pilot	Mature	Mature		
Spatial Scales Currently Captured by the Observing Network	30-60 nm	30-60 nm	Local		
Typical Observing Frequency	Seasonal to decadal	Annual to decadal	Seasonal to decadal		
Supporting Variables Measured	Atmospheric /Oceanic CO ₂ , T, S, fCO ₂ , DIC, TA	T, S, DIC, TA	T, S, DIC, TA		
Sensor(s)/ Technique	Isotope ratio mass spectrometry, Cavity ring down spectrometry	Isotope ratio mass spectrometry	Isotope ratio mass spectrometry, Cavity ring down spectrometry		
Accuracy/Uncertainty Estimate (units)	± 0.07 ‰	± 0.05 ‰	± 0.05 ‰		
Reporting Mechanism(s)	GOOS Implementation Plan IOCCP Report GO-SHIP				

*By an Observing Network we understand a number of reasonably well coordinated observing platforms equipped with technology allowing measurements of this particular EOV.

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

Table 4: Future Observing Networks			
Observing Network			
Phenomena Addressed			
Readiness Level of the Observing Network (as defined in the FOO)			
Spatial Scales Captured by the Observing Network			
Typical Observing Frequency			
Time-scale until Part of Observing System			
Supporting Variables Measured			
Sensor(s)/Technique			
Accuracy/Uncertainty Estimate (units)	 	 	

Figure 2. Spatial and temporal observation scales of component networks listed in Table 3 (thick coloured circles) and in Table 4 (thin black circles).

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the sea.

Table 5: Data & Information Creation					
Responsible entity and readiness level in each category per observing network	Oversight & Coordination	Data Quality Control	Near Real- Time Data Stream Delivery	Data Repository	Data Product
Ship of Opportunity	no formal group for surface underway measurements				
	?				
Repeat Hydrography	Ocean section coordination through IOCCP/GO- SHIP	CCHDO	CCHDO	CDIAC CCHDO for repeat hydrography	GLODAPv2
	?				
Ship-based Time-Series					

Table 6: Links & Refe	erences
Links (especially regarding Background and Justification)	Becker N., N. Andersen, B. Fiedler, P. Fietzek, A. Körtzinger, T. Steinhoff, and G. Friedrichs. 2012. Using cavity ringdown spectroscopy for continuous monitoring of $\delta^{13}C(CO_2)$ and fCO ₂ in the surface ocean. Limnology and Oceanography: Methods 10: 752-766 [doi:10.4319/lom.2012.10.752]. Quay, P., J. Stutsman, R. A. Feely, and L.W. Juranek. 2009. Net community production rates across the subtropical and equatorial Pacific Ocean estimated from air-sea $\delta^{13}C$ disequilibrium. Global Biogeochemical Cycles 23:1-15 [doi:10.1029/2008GB003193]. Quay, P. D., R. Sonnerup, T. Westby, J. Stutsman, and A. McNichol. 2003. Changes in the $^{13}C/^{12}C$ of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO_2 uptake. Global Biogeochemical Cycles 17:1-20 [doi:10.1029/ 2001GB001817]. Schmittner, A., N. Gruber, A.C. Mix, R.M. Key, A. Tagliabueand T.K. Westberry. 2013. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios ($\delta^{13}C$) in the ocean, Biogeosciences, 10, 5793-5816 [doi:10.5194/bg-10-5793-2013].
Links for Contributing Networks	http://www.go-ship.org/index.html http://www.locean-ipsl.upmc.fr/~oceans13c/indexAng.htm
Data References	http://cchdo.ucsd.edu/ CDIAC

List of abbreviations

EOV – Essential Ocean Variable GOOS – Global Ocean Observing System IOCCP – International Ocean Carbon Coordination Project FOO – Framework for Ocean Observing GEOMAR – GEOMAR Helmholtz Centre for Ocean Research δ^{13} C – Carbon-13 isotope CO₂ – Carbon dioxide T – Temperature S – Salinity fCO₂ – Fugacity of carbon dioxide DIC – Dissolved Inorganic Carbon TA – Total Alkalinity SOO – Ships Of Opportunity RH – Repeat Hydrography STS - Ship-based Time-Series nm – nautical mile = 1.852 km

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the

IOC

ICSU

CO

GO-SHIP – The Global Ocean Ship-Based Hydrographic Investigations Program CDIAC – Carbon Dioxide Information Data Analysis Center CCHDO – The Clivar & Carbon Hydrographic Data Office GLODAP – Global Ocean Data Analysis Project

The Global Ocean Observation System (GOOS) is a permanent global system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans and continuous forecasts of the future conditions of the sea.

