

Essential Ocean Variable (EOV): Transient Tracers

Background and Justification

Transient tracers are a group of (chemical) compounds that can be used in the ocean to quantify ventilation, transit time distribution and transport time-scales. These compounds are all conservative in seawater, or have well-defined decay functions, and a well-established source function over time at the ocean surface. Measurement of transient tracers in the interior ocean thus provides information on the time-scales since the ocean was ventilated, i.e. in contact with the atmosphere. Knowledge of the transit time distribution (TTD) of a water-mass allows for inference of the concentrations or fates of other transient compounds, such as anthropogenic carbon or nitrous oxide. Commonly measured transient tracers are the chlorofluorocarbons (CFCs) 11 and 12, although in the past also CFC-113 and CCl₄ have been measured. More recently also the related compound sulphur hexafluoride (SF_6) is regularly measured since it provides information on ventilation of the fast ventilated parts of the ocean. The radioactive isotopes ¹⁴C and tritium (that decays to the stable ³He) are commonly used, and have a natural decay time in addition to anthropogenic input during the 1950s. The tritium-³He couple adds unique, additional information in that whereas the other transient tracers trace pathways into the ocean from the surface, tritiugenic-³He traces the reverse pathway back out. That is, it is a nutrient-like tracer, being generated at a known rate by tritium decay and escaping to the surface ocean where it is "zeroed out" by gas exchange with the atmosphere. Although strictly not a transient tracer, since it is produced naturally by cosmic rays in the atmosphere, the argon isotope ³⁹Ar has a half-life in the right order of magnitude to characterize global ocean ventilation and have an impeccable inertness. Difficult measurement techniques have hampered its use, but recently new technologies are emerging that might allow for a global survey of ³⁹Ar in the near future.

Table 1: EOV Information	
Name of EOV	Transient Tracers
Sub-Variables	Chlorofluorocarbons (CFC-12, CFC-11, CFC-113, CCl ₄), Sulphur hexafluoride (SF ₆), tritium, ³ He, ¹⁴ C, ³⁹ Ar
Derived Products	Tracer ages, Age and transit time distribution (TTD) of water masses, Anthropogenic carbon concentration
Supporting Variables	Surface and subsurface temperature, Surface and subsurface salinity
Responsible GOOS Panel	GOOS Biogeochemistry Panel Contact: ioccp@ioccp.org

For the glossary of terms and list of abbreviations please see the back of the document.

Table 2: Requirements Setting				
Societal Drivers	 The role of ocean biogeochemistry in climate Human impacts on ocean biogeochemistry 			
Scientific Application(s)	Q1.1. How is the ocean carbon content changing?Q2.1. How large are the ocean's dead zones and how fast are they growing?Q2.2. What are rates and impacts of ocean acidification?			
Readiness Level [as defined in the FOO]	Mature – Level 9 (out of 9) – "Sustained"			
Phenomena to Capture	1 Ventilation	2 Circulation	3 Anthropogenic carbon sequestration	
Temporal Scales of the Phenomena	Annual to decadal	Annual to decadal	Annual to decadal	
Spatial Scales of the Phenomena	<u>Open Ocean</u> 500-10,000 km	<u>Open Ocean</u> 500- 10,000 km	<u>Open Ocean</u> 500– 10,000 km	
Magnitudes/Range of the Signal to Capture	0-1000 years (water mass age)	0-100 years (transport times)	~2 Pg C yr ^{.1}	
Current Uncertainty Relative to the Signal				
Target Uncertainty Relative to the Signal	±10%	±10%	±10%	

Figure 1: Spatial and temporal scales of phenomena (as color-coded and listed in Table 2 above) to be addressed.

Table 3: Current Observing Networks			
Observing Approach	Ship-based Repeat Hydrography		
Readiness Level of the Observing Approach for this EOV	Mature - 9		
Leading Observing Network	<u>GO-SHIP</u>		
Readiness Level of the Observing Network	<u>CFCs/SF₆, ³He/tritium, ¹⁴C</u> Mature - 9		
Phenomena Addressed	1,2,3		
Spatial Scales Currently Captured by the Observing Network	<u>Horizontal coverage:</u> <u>CFCs/SF6</u> global, typically every 30 nm; section spacing of 20°, coarser for the isotopes <u>Vertical coverage:</u>		
	<u>Footprint:</u> [to be defined for various oceanographic regimes]		
Typical Observing Frequency	Annual to decadal		
Supporting Variables Measured	Surface and subsurface temperature and salinity		
Sensor(s)/ Technique	<u>CFCs/SF₆</u> : Purge and trap GC with ECD <u>Tritium/³He & ¹⁴C:</u> AMS/MS		
Accuracy/Uncertainty Estimate (units)	CFCs and SF ₆ : ±1%		
	Tritium: ±0.5%, 0.005 TU (precision/detection limit)		
	<u>3He:</u> ±0.15% in δ3He		
Poporting Machanism (a)	<u>C.</u> ±0.470		
reporting wechanism(s)	individual Networks Annual Reports		

Table 4: Future Observing Capacity			
Observing Approach	Ship-based Repeat Hydrography		
Novel aspect of the Observing Approach	³⁹ Ar measurements using ATTA (Atomic Trap Trace Analysis)		
How does the novel aspect impact our observing capacity?	It allows for better quantification of phenomena 1,2 and 3 in "old" waters		
Readiness Level of the Observing Network	Concept - 3		
Spatial Scales Captured by the Observing Network	100-10,000 km		
Typical Observing Frequency	Decadal or one-time survey		
Time-Scale Until Part of Observing System	5-10 years		
Supporting Variables Measured	T Surface and subsurface temperature and salinity		
Sensor(s)/Technique	ATTA (Atomic Trap Trace Analysis)		
Accuracy/Uncertainty Estimate (units)	±1x10 ⁻¹⁶		

Figure 2. Spatial and temporal observation scales of component networks listed in Table 3 (thick coloured circles) and in Table 4 (thin black circles).

Table 5: Data & Information Creation					
Observing Approach	Oversight & Coordination	Data Quality Control	Near Real-Time Data Stream delivery	Data Repository	Data Products
Ship-based Hydrography	<u>GO-SHIP</u>	CCHDO		<u>NCEI OCADS</u> <u>CCHDO</u> <u>PANGAEA</u>	<u>GLODAPv2</u>
	Mature				

Table 6: Links & References		
Best Practices, Guides and Other Background Documentation	 A. P. McNichol et al. (2010). <u>Collection and measurement of carbon isotopes</u> in seawater DIC. The GO-SHIP Repeat Hydrography Manual: A collection of Expert Reports and Guidelines, IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1, 2010. J. L. Bullister and T. Tanhua. (2010). <u>Sampling and Measurement of</u> <u>Chlorofluorocarbon and Sulfur Hexafluoride in Seawater</u>. The GO-SHIP Repeat Hydrography Manual: A collection of Expert Reports and Guidelines, IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1, 2010. 	
Links for Contributing Networks	GO-SHIP: <u>http://www.go-ship.org/index.html</u>	
Links for Near-Real Time Data Stream Delivery		
Links to Data Repositories	NCEI OCADS: <u>https://www.nodc.noaa.gov/ocads/</u> CCHDO: <u>http://cchdo.ucsd.edu/</u> PANGAEA: <u>https://www.pangaea.de/</u>	
Data Product Links and References	GLODAPv2: <u>http://glodap.info/</u> Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297-323, doi:10.5194/essd-8- 297-2016, 2016.	

Glossary of terms

A **Framework for Ocean Observing (FOO)** is a guide for the ocean observing community to establish an integrated and sustained global observing system that addresses the variables to be measured, the approach to measuring them, and how their data and products will be managed and made widely available. FOO is available from: <u>http://www.ioccp.org/index.php/foo</u>

A **GOOS Essential Ocean Variable** is a sustained measurement or a group of measurements necessary to assess state and change at a global level, and to increase societal benefits from the ocean [on scales from global to regional].

Sub-variables are components of the EOV that may be measured, derived or inferred from other elements of the observing system and used to estimate the desired EOV.

Supporting variables are other EOVs or other measurements from the observing system that may be needed to deliver the sub-variables and/or derived products of the EOV.

Derived products are calculated from the EOV and other relevant information, in response to user needs.

A **phenomenon** is an observed process, event, or property, with characteristic spatial and time scale(s), measured or derived from one or a combination of EOVs, and needed to answer at least one of the GOOS Scientific Questions.

A **footprint** is here defined as the area over which given EOV measurements performed by a single observing element (as a transect, station, track, etc.) are representative of a broader region.

List of abbreviations

EOV – Essential Ocean Variable GOOS – Global Ocean Observing System IOCCP – International Ocean Carbon Coordination Project FOO – Framework for Ocean Observing CFCs - Chlorofluorocarbons TTD – Transit Time Distribution GC – Gas Chromatograph ECD – Electron Capture Detector MS – Mass Spectrometer AMS - Accelerator Mass Spectrometer TU – Tritium Units ATTA - Atomic Trap Trace Analysis nm – nautical mile = 1.852 km GO-SHIP – Global Ocean Ship-based Hydrographic Investigations Program CCHDO - CLIVAR and Carbon Hydrographic Data Office GLODAP – Global Ocean Data Analysis Project NCEI OCADS – National Centers for Environmental Information Ocean CArbon Data System

List of References

Z.-T. Lu, P. Schlosser, W.M. Smethie Jr., N.C. Sturchio, T.P. Fischer, B.M. Kennedy, R. Purtschert, J.P. Severinghaus, D.K. Solomon, T. Tanhua, R. Yokochi, 2014. Tracer Applications of Noble Gas Radionuclides in the Geoscience, Earth Science Reviews, doi.org/10.1016/j.earscirev.2013.09.002.

Fine, R. A.: Observations of CFCs and SF(6) as Ocean Tracers, Annual Review of Marine Science, Vol 3, 3, 173-195, 10.1146/annurev.marine.010908.163933, 2011.

