## SOCAT version 2020: Key in the value chain of surface ocean CO<sub>2</sub> measurements

Dorothee Bakker<sup>1</sup> (d.bakker@uea.ac.uk), Simone Alin<sup>2</sup>, Nicholas Bates<sup>3,4</sup>, Meike Becker<sup>5</sup>, Rocío Castaño-Primo<sup>5,6</sup>, Cathy Cosca<sup>2</sup>, Margot Cronin<sup>7</sup>, Koji Kadono<sup>8</sup>, Alex Kozyr<sup>9</sup>, Siv Lauvset<sup>10</sup>, Nicolas Metzl<sup>11</sup>, David Munro<sup>12,13</sup>, Shin-ichiro Nakaoka<sup>14</sup>, Kevin O'Brien<sup>2,15</sup>, Jon Ólafsson<sup>16</sup>, Are Olsen<sup>5,6</sup>, Benjamin Pfeil<sup>5,6</sup>, Denis Pierrot<sup>17,18</sup>, Karl Smith<sup>2,15</sup>, Adrienne Sutton<sup>2</sup>, Taro Takahashi<sup>†,19</sup>, Bronte Tilbrook<sup>20,21</sup>, Rik Wanninkhof<sup>17</sup> and all >100 SOCAT contributors

**Abstract** - The Surface Ocean  $CO_2$  Atlas (SOCAT, **www.socat.info**) documents the increase in surface ocean  $CO_2$  (carbon dioxide), a critical measure as the oceans are taking up one quarter of the global  $CO_2$  emissions from human activity<sup>b</sup>. Synthesis and gridded, quality-controlled products in SOCAT version 2020 contain 28.2 million *in situ* surface ocean  $fCO_2$  (fugacity of  $CO_2$ ) measurements for the global oceans and coastal seas with an accuracy < 5 µatm, while a further 2.3 million  $fCO_2$  values with an accuracy of 5 to 10 µatm are made available separately. The SOCAT community-led synthesis product is a key step in the value chain based on *in situ* inorganic carbon measurements of the oceans, which provides policy makers with essential information on ocean  $CO_2$  uptake in climate negotiations. The global need for accurate knowledge of ocean  $CO_2$  uptake and its variation makes sustained funding for *in situ* surface ocean  $CO_2$  observations imperative.







**Fig. 2.** The value chain based on in situ inorganic carbon measurements of the oceans. Measurements of inorganic carbon variables in the ocean are made on research ships, commercial ships, moorings and on drifting and autonomous surface platforms. These data are quality controlled and assembled in the SOCAT and GLODAP synthesis products. Advanced interpolation methods allow quantification of ocean CO<sub>2</sub> uptake. These estimates feed into the Global Carbon Budget<sup>6</sup>, IPCC assessments and other high-impact reports that inform international climate negotiations. From<sup>c</sup>.

**Fig. 3.** Number of surface water  $fCO_2$  values per year with an estimated accuracy of < 10 µatm in successive SOCAT versions.

situ surface water fCO<sub>2</sub> values (colour coded,  $\mu$ atm) with an estimated accuracy of < 10  $\mu$ atm in version 2020. Squares indicate moorings.

**Fig. 4.** Percentage of  $fCO_2$  values with an estimated accuracy of < 2, 5 and 10 µatm and their data set flags for years in version 2020.

## **Key features**

- Community-based 'volunteer' submission and quality control
- Synthesis and gridded, quality-controlled products of *in situ* surface ocean *f*CO<sub>2</sub> measurements from ships, moorings, drifting and autonomous surface platforms for the global oceans and coastal seas
- With an estimated accuracy of < 5 µatm:
- v2020 : 28.2 million *f*CO<sub>2</sub>, 1957-2020
- v2019 : 25.7 million  $fCO_2$ , 1957-2019
- v1 (2011): 6.3 million *f*CO<sub>2</sub>, 1968-2007
- 2.3 million values from alternative sensors with an estimated accuracy of 5 to 10 µatm are made available separately
- Online viewers and data download (www.socat.info)
- Limited quality control for sea surface temperature and salinity
- Data submission for v2021 by 15/01/2021, quality control by 31/03/2021

## Scientific findings, applications and impact

- Documents the increase in global surface ocean CO<sub>2</sub><sup>e</sup>
- Data gaps in space and time addressed through advanced interpolation schemes<sup>e,h,i</sup>
- Large year-to-year variation in global ocean CO<sub>2</sub> uptake<sup>h</sup>
- Models underestimate variation in ocean CO<sub>2</sub> uptake<sup>i</sup>
- Quantification of ocean CO<sub>2</sub> uptake<sup>b,e,f,h,i</sup>, ocean acidification<sup>d,g</sup> and priors for the land carbon sink<sup>h</sup>
- Informs the Surface Ocean pCO<sub>2</sub> Mapping Intercomparison (SOCOM)<sup>i</sup> and the Global Carbon Budget<sup>b</sup>
- Evaluation of sensor data (BGC Argo floats<sup>j</sup>, gliders) and models, incl. CMIP<sup>a</sup>
- Cited by >329 peer-reviewed scientific articles and >80 reports
- Annual public releases as a Voluntary Commitment for SDG 14.3 (#OceanAction20464) and the UN Decade of Ocean Science for Sustainable Development

**Data Use: To generously acknowledge the contribution of SOCAT scientists** by invitation to co-authorship, especially for key data providers in regional studies, and/or reference to relevant scientific articles. **Acknowledgements:** We thank the numerous contributors, funding agencies, IOCCP, SOLAS and IMBER. **Documentation v3-v2020:** Bakker et al. (2016) ESSD 8: 383-413; **v2:** Bakker et al. (2014) ESSD 6:69-90; **v1:** Pfeil et al. (2013) ESSD 5:125-143; Sabine et al. (2013) ESSD 5:145-153. **References:** Eyring et al., 2016<sup>a</sup>; Friedlingstein et al., 2019<sup>b</sup>; Guidi et al., 2020, doi:10.5281/zenodo.3755793<sup>c</sup>; Jiang et al., 2019<sup>d</sup>; Landschützer et al., 2014<sup>e</sup>; Laruelle et al., 2018<sup>f</sup>; Lauvset et al., 2015<sup>g</sup>; Rödenbeck et al., 2014<sup>h</sup>, 2015<sup>i</sup>; Williams et al., 2017<sup>j</sup>. **Affiliations:** <sup>1</sup>UEA, UK (**d.bakker@uea.ac.uk**); <sup>2</sup>NOAA-PMEL & <sup>3</sup>BIOS, USA; <sup>4</sup>UoS, UK; <sup>5</sup>UiB & <sup>6</sup>BCCR, Norway; <sup>7</sup>Marine Institute, Ireland; <sup>8</sup>JMA, Japan; <sup>9</sup>NOAA-NCEI, USA; <sup>10</sup>NORCE, Norway; <sup>11</sup>LOCEAN, France; <sup>12</sup>CIRES, UoC & <sup>13</sup>NOAA-ESRL, USA; <sup>14</sup>NIES, Japan; <sup>15</sup>JISAO, UW, USA; <sup>16</sup>MRI, Iceland; <sup>17</sup>NOAA-AOML, <sup>18</sup>CIMAS & <sup>19</sup>LDEO, USA; <sup>20</sup>CSIRO & <sup>21</sup>AAPP, Australia.

